DCP300 Digital Controller Programmer

Function

The DCP300 is a high-function digital controller programmer supporting up to 19 program profiles with up to 30 segments per profile. A universal input accepts thermocouple signals, resistance temperature detector (RTD) signals, dc voltages and dc currents. DCP301 is a single channel (1 input) version. DCP302 is a dual channel model with 2 inputs and 2 loops. A temperature and relative humidity calculation model which controls temperature and relative humidity is selectable on DCP302.

The DCP300 supports extensive digital I/O functions including 3 event outputs, 5 time events (optional) and 12 external switch inputs (8 optional). Up to 2 auxiliary outputs can also be added on as an option. DCP302 has only 1 auxiliary output available.

Figure 1-The DCP300 Digital Controller Programmer

Features

- Input 1 Accuracy $= \pm 0.1 \%$ FS
(Input 2 Accuracy $= \pm 0.2 \%$ FS). High-speed sampling time of 0.1 seconds.
- Any input type can be selected by key operation.
- A maximum of 19 program profiles can be stored and up to 30 segments can be programmed to each profile.
- Three event outputs for PV, deviation, controller mode or other states are standard.
- Twelve external switch inputs (eight optional) allow remote selection of program numbers or operation.
- Up to eight frequently changed parameter setups can be registered to the PARA key.
- Universal AC power supply within range of 90 Vac to 264 Vac , 50/60 Hz .
- CE mark compliant applicable standards: EN61010-1, EN50081-2, EN50082-2
- Wide range of optional functions enables use in an extensive range of applications:
- 5 time event outputs
- 8 digital inputs
- 2 auxiliary outputs on DCP301;

1 auxiliary output on DCP302

- Relative Humidity model available on DCP302.

Basic Function Blocks of DCP301/302

Specifications

Program

Number of Programs	19 maximum
Number of Segments	30 per program maximum
Segment Setting System	RAMP- X system: Set by setpoints (SP1, SP2) and time.
Segment Time	0 to 99 hours 59 minutes; or 0 to 99 minutes 59 seconds (time unit selectable)
Basic Time Accuracy	$\pm 0.01 \%$ (0.1 second delay when segment time setting is 0)
Events (3)	Sets operating point.
Time Events (5)	Sets ON and OFF times.
PID Set Number (each channel)	Sets 0 to 8. (Set 0 for continuation of previous segment.) (Set 0 to 4 on heat/cool models.)
Guarantee Soak (each channel)	Sets G.Soak width 0 units to 1000 units.
PV Start	Sets program ON/OFF and channel.
Cycle	Sets program count 0 to 9999.
Pattern Link	Sets program number 0 to 19 (0: no link).
Tag	Sets 8 alphanumerics for each program (not displayed on controller).

Specifications, continued

Input 1	
Input Type	Thermocouple, resistance temperature detector, dc voltage, dc current multi-range (Table 1)
Input Readout Accuracy	$\pm 0.1 \%$ FS ± 1 unit (varies according to standard conditions, display value conversion and range) - At $-100^{\circ} \mathrm{C}$ maximum of K and T thermocouples: $\pm 1^{\circ} \mathrm{C} \pm 1$ unit - At $260^{\circ} \mathrm{C}$ maximum of B thermocouple: $\pm 4.0 \%$ FS ± 1 unit At $260^{\circ} \mathrm{C}$ to $800^{\circ} \mathrm{C}$: $\pm 0.4 \%$ FS ± 1 unit At $800^{\circ} \mathrm{C}$ to $1800^{\circ} \mathrm{C}$: $\pm 0.2 \%$ FS ± 1 unit - At $100^{\circ} \mathrm{C}$ maximum of R and S thermocouples: $\pm 0.2 \%$ FS ± 1 unit At $100^{\circ} \mathrm{C}$ to $1600^{\circ} \mathrm{C}$: $\pm 0.15 \%$ FS ± 1 unit - At $300^{\circ} \mathrm{C}$ maximum of PR40-20 thermocouple: $\pm 2.5 \%$ FS ± 1 unit At $300^{\circ} \mathrm{C}$ to $800^{\circ} \mathrm{C}$: $\pm 1.5 \%$ FS ± 1 unit At $800^{\circ} \mathrm{C}$ to $1900^{\circ} \mathrm{C}$: $\pm 0.5 \%$ FS ± 1 unit - Golden iron chromel thermocouple: $\pm 1.5 \mathrm{~K} \pm 1$ unit - F01, F33, F38, P01, P33 and P38 ranges by resistance thermometer detector input: $\pm 0.15 \% \pm 1$ unit - At 0 mV to 10 mV range: $\pm 0.15 \%$ FS ± 1 unit - At $-100^{\circ} \mathrm{C}$ maximum of DIN U thermocouple: $\pm 2^{\circ} \mathrm{C} \pm 1$ unit At $-100^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$: $\pm 1^{\circ} \mathrm{C} \pm 1$ unit - At $-100^{\circ} \mathrm{C}$ maximum of DIN L thermocouple: $\pm 1.5^{\circ} \mathrm{C} \pm 1$ unit
Input Sampling Cycle	0.1 seconds
Input Bias Current	Thermocouple, dc voltage input: $\pm 1.3 \mu \mathrm{~A}$ maximum (at peak value, under standard conditions). At 1 V minimum range: $-3 \mu \mathrm{~A}$ maximum.
Input Impedance	DC current input: $50 \Omega \pm 10 \%$ (under operating conditions)
Measuring Current	RTD input: $1.04 \mathrm{~mA} \pm 0.02 \mathrm{~mA}$, current flow from terminal A (under operating conditions)
Influence of Wiring Resistance	Thermocouple, dc voltage input: Changes in readout value at wiring resistance of 250Ω at both ends are as follows by input conversion: - 0 mV to $10 \mathrm{mV},-10 \mathrm{mV}$ to +10 mV : Within $35 \mu \mathrm{~V}$ - 0 mV to 100 mV : Within $60 \mu \mathrm{~V}$ - Other: Within $750 \mu \mathrm{~V}$ RTD input: $\pm 0.01 \% \mathrm{FS} / \Omega$ maximum in wiring resistance range 0Ω to 10Ω. Range of F 01 , F33, F38, P01, P33, and P38: ± 0.02 \% FS/ $/$ maximum.
RTD Input Allowable Wiring Resistance	- Allowable wiring resistance is 85Ω maximum. (Including Zener barrier resistance. When Zener barrier is used, this applies only to ranges other than F01, F33, F38, P01, P33, and P38. Note that site adjustment is required.) - Allowing wiring resistance is 10Ω maximum. (This applies to ranges F01, F33, F38, P01, P33, and P38. Note that the Zener barrier cannot be used.)
Allowable Parallel Resistance	Thermocouple disconnection detection allowable parallel resistance: $1 \mathrm{M} \Omega$ minimum
Maximum Allowable Input	Thermocouple, dc voltage input: -5 Vdc to +15 Vdc DC current input: $50 \mathrm{~mA} \mathrm{dc} ; 2.5 \mathrm{Vdc}$
Burnout	Upscale and downscale can be internally selected. (DC current input and dc voltage input ranges of 1 V or more are only downscaled.)

Specifications, continued

Input 1, continued	
Over-range Detection Threshold	110 \% FS minimum: Upscale -10% FS maximum: Downscale (Note that F50 range is not downscaled. Lower readout limit of B 18 range is $20^{\circ} \mathrm{C}$.)
Cold Junction Compensation Accuracy	$\pm 0.5^{\circ} \mathrm{C}$ (under standard conditions)
Influence of Ambient Temperature on Cold Junction Compensation	$\pm 0.2{ }^{\circ} \mathrm{C}$ (in range $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$)
Cold Junction Compensation System	Internal/external ($0^{\circ} \mathrm{C}$ only) compensation selectable
Scaling	-1999 units to +9999 units (Settable by dc voltage and dc current. Reverse scaling and decimal point repositioning possible.)
Square Root Extraction	Dropout 0.1 \% to 10.0 \%. Possible by dc current and voltage ranges.
Linearization Table Approximation	12 (both line ends fixed, 11 points variable)
Input Bias	-1000 units to +1000 units variable
Digital Filter	0.0 sections to 120.0 seconds variable (filter OFF at 0.0)
Input 2 (DCP302 only)	
Input Type	Thermocouple, resistance temperature detector, dc voltage, multi-range (Table 2)
Input Readout Accuracy	$\pm 0.2 \%$ FS ± 1 unit (varies according to standard conditions, display value conversion)
Input Sampling Cycle	0.1 seconds
Input Bias Current	Thermocouple: $\pm 2.0 \mu \mathrm{~A}$ maximum (under standard conditions). DC voltage input: $\pm 5 \mu \mathrm{~A}$ maximum (under standard conditions)
Measuring Current	RTD input: $0.64 \mathrm{~mA} \pm 0.02 \mathrm{~mA}$, current flow from terminal A (under operating conditions)
Influence of Wiring Resistance	Thermocouple, dc voltage input: Changes in readout value at wiring resistance of 250Ω at both ends are as follows by input conversion: - RTD: \quad Within $300 \mu \mathrm{~V}$ - DC voltage: Within $750 \mu \mathrm{~V}$ $R T D$ input: $\pm 0.01 \% \mathrm{FS} / \Omega$ maximum in wiring resistance range 0 to 10Ω. Range of F 01 and P01: ± 0.02 \% FS/ Ω maximum.
RTD Input Allowable Wiring Resistance	- Allowable wiring resistance is 85Ω maximum (Including Zener barrier resistance. When Zener barrier is used, this applies only to ranges other than F36 and P36. Note that site adjustment is required.) - Allowing wiring resistance is 10Ω maximum (This applies to ranges F01 and P01. Note that the Zener barrier cannot be used.)
Allowable Parallel Resistance	Thermocouple disconnection detection allowable parallel resistance: $1 \mathrm{M} \Omega$ minimum
Maximum Allowable Input	Thermocouple: -0.3 Vdc to +5 Vdc DC voltage input: -1 Vdc to +11 Vdc
Burnout	Thermocouple: Upscale DC voltage input: Downscale

Specifications, continued

Input 2 (DCP302 only), continued	
Over-range Detection Threshold	```110 % FS minimum: Upscale -10% FS maximum: Downscale (Note that the range of L07 is downscaled at -1 % FS or less.)```
Cold Junction Compensation Accuracy	$\pm 0.7^{\circ} \mathrm{C}$ (under standard conditions)
Influence of Ambient Temperature on Cold Junction Compensation	$\pm 0.2{ }^{\circ} \mathrm{C}$ (in range $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$)
Cold Junction Compensation System	Internal/external ($0^{\circ} \mathrm{C}$ only) compensation selectable
Scaling	-1999 units to +9999 units (Settable by dc voltage range. Reverse scaling and decimal point repositioning possible.)
Square Root Extraction	Dropout 0.1 \% to 10.0 \%. Possible by dc voltage range.
Linearization Table Approximation	12 segments (both ends fixed, 11 points variable)
Input Bias	-1000 units to +1000 units variable
Digital Filter	0.0 to 120.0 seconds variable (filter OFF at 0.0)
Relative Humidity (DCP302 only)	Dry Bulb (100 R RTD): $-200^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}\left[-300^{\circ} \mathrm{F}\right.$ to $\left.900^{\circ} \mathrm{F}\right]$ Wet Bulb (100』 RTD): 05% to $100 \% \mathrm{RH}^{*}$ *From $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}\left(32{ }^{\circ} \mathrm{F}\right.$ to $\left.212^{\circ} \mathrm{F}\right)$
External Switch (RSW Input)	
Number of Inputs	12 maximum (4 standard and 8 optional)
Types of Connectable Outputs	Dry contacts (relay contact) and open-collector (current sink to ground)
Terminal Voltage (open)	10.4 V to 12.6 V (under operating conditions) across common terminal (terminal 25) and each input terminal
Terminal Current (short-circuit)	$5.0 \mathrm{~mA}+6.6 \mathrm{~mA}$ across each terminal (under operating conditions)
Allowable Contact Resistance (dry contact)	ON: 700Ω maximum (under operating conditions) OFF: $10 \mathrm{k} \Omega$ minimum (under operating conditions)
Residual Current (open-collector ON)	3 V maximum (under operating conditions)
Leakage Current (open-collector OFF)	0.1 mA maximum (under operating conditions)
Assignments (fixed)	RUN, HOLD, RESET, ADV (digital inputs 1-4)
Assignments (variable)	Program Number, FAST, PV start, AT, AUTO/MANUAL, G.Soak cancel, reverse/direct action (optional inputs)
Input Sampling Cycle	0.1 seconds
ON Detection Minimum Hold Time	0.2 seconds (Program No.: 0.4 seconds)

Specifications, continued

Indication/Programmer

Upper Display	Green 4-digit, 7-segment LED This normally displays PV values. Item codes are displayed in parameter setup.
Lower Display	Orange 4-digit, 7-segment LED This normally displays SP values and output value. Setting values are displayed in parameter setup.
Program Number Display	Green 2-digit, 7-segment LED This normally displays program number.
Segment Number Display	Green 2-digit, 7-segment LED This normally displays segment number. Item numbers are displayed in parameter setup, and alarm number is displayed when alarm occurs.
Profile Display	6 orange LEDs Displays program pattern rise, soak and fall tendencies.
Status Displays	24 round LEDs Modes: RUN, HLD, MAN, PRG (green) Display details: PV, SP, OUT, TM, CYC, CH1, CH2 (green) Battery voltage: BAT (red) (blinks at low voltage) Status: AT, OT1, OT2, OT3 (orange) Events: EV1, EV2, EV3, T1, T2, T3, T4, T5 (orange)
Operation Keys	13 rubber keys
Mode	
Program Operation Mode	READY: Ready to run program (control stop/program number selectable) RUN: Program run HOLD: Program hold FAST: Program fast-forward END: Program end
	AUTO: Automatic operation MANUAL: Manual operation (output controlled on console)
Constant-Value Operation Mode	READY: Ready to run program (control stop) RUN: Program running
	AUTO: Automatic operation MANUAL: Manual operation (output controlled on console)

Specifications, continued

Control	
PID Control	Proportional band (P) 0.1 \% to 999.9 \% Rate time (I) 0 seconds to 3600 seconds. PD control if set to 0 . Reset time (D) 0 seconds to 1200 seconds. PI control if set to 0 . MV limit Lower limit: - 10.0 \% to upper limit \% Upper limit: Lower limit to +110.0 \% Manual reset 0.0 \% to 100.0 \% Number of PID sets 8 sets for program operation plus 1 set for constant-value operation PID set selection Segment designation/automatic zone selection can be switched by program operation MV change limit 0.1% to $10.0 \% / 0.01$ seconds, no limit by 0.0 Autotuning Automatic setting of PID value by limit cycle system plus Neuro and Fuzzy (2 degrees of freedom PID) and Smart systems (not possible on heat/cool channel) Position-proportional dead zone 0.5% to 25.0% (settable on 2G output model) Heat/cool dead zone -100.0% to $+50.0 \%$ (settable on 3D and 5K output models)
Three Position Control	Deviation lower/upper limit, Deviation lower/upper limit hysteresis 0 units to 1000 units (settable when 3-position control is selected on 3D output models)
Reverse/Direct Action Switching	Switchable (output other than heat/cool)
Programmer Function	Switching: mV output can be switched to SP output (current output) Scaling: Supported Output resolution: 1/10000
Auxiliary Output	Type: PV, SP, deviation, MV, MFB Scaling: Supported Output resolution: 1/10000
Output	
OD Output 1 3D Outputs 1, 2, 3	Relay contact output Contact type: 1 a 1 b Contact rating: $5 \mathrm{~A}(30 \mathrm{Vdc}$, resistive load) $5 \mathrm{~A}(120 \mathrm{Vac}$, resistive load) $4 \mathrm{~A}(240 \mathrm{Vac}$, resistive load) Allowable contact voltage: 250 Vac, resistive load 125 Vdc, resistive load Maximum switching power: 150 W, resistive load 960 VA, resistive load Life: 100,000 operations (resistive load at contact rating, frequency: 30 operations/minute $)$ Minimum switching voltage: 5 V Minimum switching current: 100 mA Output resolution: $1 / 1000$ Time-proportional cycle: 5 seconds to 120 seconds

Specifications, continued

Output, continued

2G Output 1	M/M drive relay Contact type: Contact rating: Allowable contact voltage: Maximum switching power: Life: Minimum switching voltage: Minimum switching current: MFB (motor feedback) input range: Control at MFB disconnection:	1a (2 circuits) 2.5A ($30 \mathrm{Vdc}, \mathrm{L} / \mathrm{R}=0.7 \mathrm{~ms}$) $4 \mathrm{~A}(120 \mathrm{Vac}, \cos \varnothing=0.4)$ $2 \mathrm{~A}(240 \mathrm{Vac}, \cos \varnothing=0.4)$ $250 \mathrm{Vac}, \cos \varnothing=0.4$ $125 \mathrm{Vdc}, \mathrm{L} / \mathrm{R}=0.7 \mathrm{~ms}$ $75 \mathrm{~W}(\mathrm{~L} / \mathrm{R}=0.7 \mathrm{~ms})$ $480 \mathrm{VA}(\cos \varnothing=0.4)$ 100,000 operations ($\cos \varnothing=0.4$ at contact rating, frequency: 30 operations/minute) 5 V 100 mA 100Ω to 2500Ω ON/OFF for continuation of operation according to MFB estimated position can be selected
5G Outputs 1, 2 5K Outputs 1, 2, 3 Auxiliary Outputs 1, 2	Current output Output current: Allowable load resistance: Output accuracy: to Output resolution: Inrush current: Maximum output current: Minimum output current: Output updating cycle: Open terminal voltage:	4 to 20 mA dc $/ 0$ to 20 mA dc 600Ω maximum (under operating conditions) $\pm 0.1 \%$ FS maximum (under standard conditions) Note that output accuracy becomes $\pm 0.5 \%$ FS when 0 20 mA output is 5% or less. 1/10000 25 mA maximum for 50 ms maximum (at 250Ω load) 22.0 mA dc 0.0 mA dc 0.1 seconds 25 V maximum (output 1) 18 V maximum (output 2, output 3, auxiliary output)
5G Outputs 1, 2 5K Outputs 1, 2, 3 (when current output is switched to voltage output)	Voltage output Allowable load resistance: Inrush current: Load current adjustment: Open terminal voltage: OFF leakage current: Output response time: Output resolution: Time-proportional cycle:	600Ω maximum (under operating conditions) 25 mA maximum for 50 ms maximum (at 250Ω load) 2 mA to 22 mA variable 25 V maximum (output 1) 18 V maximum (output 2, output 3) $100 \mu \mathrm{~A}$ maximum At ON-OFF 600Ω load: 0.5 ms maximum At OFF-ON 600Ω load: 1.0 ms maximum 1/1000 1 second to 60 seconds variable
Event/Time Event Output		
Events 1, 2	Relay contact output Contact type: Contact rating: Life: Minimum switching voltage, current:	```1a 1A (240 Vac/30 Vdc, resistive load) 100,000 operations (at rating) 10 V, 10 mA```
Event 3	Relay contact output Contact type: Contact rating: Life: Minimum switching voltage, current:	$\begin{aligned} & \text { 1a1b } \\ & 2 \mathrm{~A}(240 \mathrm{Vac} / 30 \mathrm{Vdc} \text {, resistive load) } \\ & 100,000 \mathrm{operations} \mathrm{(at} \mathrm{rating)} \\ & 10 \mathrm{~V}, 10 \mathrm{~mA} \end{aligned}$
Time Events 1 to 5	Open-collector output External supply voltage: Maximum load current: OFF leakage current: ON residual voltage:	10 to 29 Vdc $70 \mathrm{~mA} / \mathrm{load}$ 0.1 mA maximum 1.6 V maximum

Specifications, continued

Specifications, continued

General Specifications, continued		
Standard Conditions	Ambient temperature: Ambient humidity: Rated power voltage: Power frequency: Vibration resistance: Impact resistance: Mounting angle:	$\begin{aligned} & 23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C} \\ & 60 \% \pm 5 \% \mathrm{RH} \\ & 105 \mathrm{Vac} \pm 1 \% \\ & 50 \mathrm{~Hz} \pm 1 \mathrm{~Hz} \text { or } 60 \mathrm{~Hz} \pm 1 \mathrm{~Hz} \\ & 0 \mathrm{~m} / \mathrm{s}^{2} \\ & 0 \mathrm{~m} / \mathrm{s}^{2} \\ & \text { Reference plane (vertical) } \pm 3^{\circ} \end{aligned}$
Operating Conditions	Ambient temperature range: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (temperature at case bottom when closely mounted) Ambient humidity range: $\quad 10 \%$ to $90 \% \mathrm{RH}$ (no condensation) Rated power voltage: $\quad 90 \mathrm{Vac}$ to 264 Vac Power frequency: $50 \mathrm{~Hz} \pm 2 \mathrm{~Hz}$ or $60 \mathrm{~Hz} \pm 2 \mathrm{~Hz}$ Vibration resistance: Impact resistance: $0 \mathrm{~m} / \mathrm{s}^{2}$ to $9.80 \mathrm{~m} / \mathrm{s}^{2}$ Mounting angle: \quad Reference plane (vertical) $\pm 10^{\circ}$	
Installation Types	Permanent connection type unit, indoor mounting, panel mounting	
Applicable Standards	EN61010-1, EN50081-2, EN50082-2 (CE Marking declaration)	
Installation Category	Category II (IEC664-1, EN61010-1)	
Pollution Degree	2	
Fuse	Rating: IEC127 Cutoff speed: Delayed operation type (T) Rated voltage: 250 V Rated current: 1 A	
Transport/Storage Conditions	Ambient temperature: $-20{ }^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$ Ambient humidity: 10% to $+95 \% \mathrm{RH}$ (no condensation) Vibration resistance: $0 \mathrm{~m} / \mathrm{s}^{2}$ to $4.90 \mathrm{~m} / \mathrm{s}^{2}$ $(10 \mathrm{~Hz}$ to 60 Hz for 2 hours each in X, Y and Z directions) Impact resistance: $0 \mathrm{~m} / \mathrm{s}^{2}$ to $490 \mathrm{~m} / \mathrm{s}^{2}(3$ times vertically) Package drop test: Drop height: $60 \mathrm{~cm}(1$ corner, 3 edges and 6 planes; free fall)	
Terminal Screw	M3.5 self-tapping screw	
Terminal Screws Tightening Torque	0.78 Nm to 0.98 N m (6.9 in lb to 8.6 in lb)	
Mask/Case Materials	Mask: Multilon Case: Polycarbonate	
Mask/Case Color	Mask: Dark gray (Munsell 5Y3.5/1) Case: Light gray (Munsell 2.5Y7.5/1)	
Installation	Specially designed mounting bracket	
Weight	Approximately 900 g	

TABLE 1 - Input 1 Types and Ranges (selectable in setup)

Type	Input Type	Range No.	Code	Temperature Range	
				${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$
Thermocouple	K (CA)	0	K09	0 to 1200	0 to 2400
	K (CA)	1	K08	0.0 to 800.0	0 to 1600
	K (CA)	2	K04	0.0 to 400.0	0 to 750
	K (CA)	3	K29	-200 to +1200	-300 to +1200
	K(CA)	4	K44	-200.0 to +300.0	-300 to +700
	K (CA)	5	K46	-200.0 to +200.0	-300 to +400
	E (CRC)	6	E08	0.0 to 800.0	0 to 1800
	J (IC)	7	J08	0.0 to 800.0	0 to 1600
	T (CC)	8	T44	-200.0 to +300.0	-300 to +700
	B (PR30-6)	9	B18	0 to 1800	0 to 3300
	R (PR13)	10	R16	0 to 1600	0 to 3100
	S (PR10)	11	S16	0 to 1600	0 to 3100
	W (WRe5-26)	12	W23	0 to 2300	0 to 4200
	W (WRe5-26)	13	W14	0 to 1400	0 to 2552
	PR40-20	14	D19	0 to 1900	0 to 3400
	Ni-Ni-Mo	15	Z13	0 to 1300	32 to 2372
	N	16	U13	0 to 1300	32 to 2372
	PL II	17	Y13	0 to 1300	32 to 2372
	DIN U	18	Z08	-200.0 to +400.0	-300 to +750
	DIN L	19	Z07	-200.0 to +800.0	-300 to +1600
	Golden-iron-chromel	20	Z06	0.0 to 300.0K	-
Resistance Temperature Detector (RTD)	JIS'89 Pt100 (IEC Pt100 Ω)	32	F50	-200.0 to +500.0	-300 to +900
		33	F46	-200.0 to +200.0	-300 to +400
		34	F32	-100.0 to +150.0	-150.0 to +300.0
		35	F36	-50.0 to +200.0	-50.0 to +400.0
		36	F38	-60.0 to +40.0	-76.0 to +104.0
		37	F33	-40.0 to +60.0	-40.0 to +140.0
		38	F05	0.0 to 500.0	0.0 to 900.0
		39	F03	0.0 to 300.0	0.0 to 500.0
		40	F01	0.00 to 100.00	0.0 to 200.0
	JIS'89 JPt100	48	P50	-200.0 to +500.0	-300 to +900
		49	P46	-200.0 to +200.0	-300 to +400
		50	P32	-100.0 to +150.0	-150.0 to +300.0
		51	P36	-50.0 to +200.0	-50.0 to +400.0
		52	P38	-60.0 to +40.0	-76.0 to +104.0
		53	P33	-40.0 to +60.0	-40.0 to +140.0
		54	P05	0.0 to 500.0	0.0 to 900.0
		55	P03	0.0 to 300.0	0.0 to 500.0
		56	P01	0.00 to 100.00	0.0 to 200.0

Type	Input Type	Range No.	Code	Range (Programmable)
DC Current	4 mA to 20 mA	64	C01	-1999 to +9999
	0 mA to 20 mA	65	C08	
DC Voltage	0 mV to 10 mV	66	M01	
	-10 mV to +10 mV	67	L02	
	0 mV to 100 mV	68	L01	
	0 V to 1 V	69	L04	
	-1 V to +1 V	70	L08	
	1 V to 5 V	71	V01	
	0 V to 5 V	72	L05	
	0 V to 10 V	73	L07	

TABLE 2 - Input 2 (DCP302 only) Types and Ranges (selectable in setup)

Type	Input Type	Range No.	Code	Temperature Range	
				${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$
Thermocouple	K (CA)	128	K44	-200.0 to +300.0	-300 to +700
	K (CA)	129	K29	-200 to +1200	-300 to +2400
Resistance Temperature Detector (RTD)	JIS'89 PT100 (IEC Pt100 Ω)	160	F36	-50.0 to +200.0	-50.0 to +400.0
		161	F01	0.00 to 100.00	0.0 to 200.0
	JIS'89 JPt100	176	P36	-50.0 to +200.0	-50.0 to +400.0
		177	P01	0.00 to 100.00	0.0 to 200.0
Type	Input Type	Range No.	Code	Range (Programmable)	
DC Voltage	0 V to 10 V	192	L07	-1999 to +9999	
	1 V to 5 V	193	V01		

NOTES FOR TABLE 1 AND TABLE 2:

- Readout Accuracy (items outside of $\pm 0.1 \%$ FS range)
- At $-100^{\circ} \mathrm{C}$ maximum of K and T thermocouples: $\pm 1^{\circ} \mathrm{C} \pm 1$ unit
- At $260^{\circ} \mathrm{C}$ maximum of B thermocouple: $\pm 4 \% \mathrm{FS} \pm 1$ unit At $260^{\circ} \mathrm{C}$ to $800^{\circ} \mathrm{C}: \pm 0.4 \% \mathrm{FS} \pm 1$ unit At $800^{\circ} \mathrm{C}$ to $1800^{\circ} \mathrm{C}: \pm 0.2 \% \mathrm{FS} \pm 1$ unit
- At $100^{\circ} \mathrm{C}$ maximum of R and S thermocouples: $\pm 0.2 \% \mathrm{FS} \pm 1$ unit At $100^{\circ} \mathrm{C}$ to $1600^{\circ} \mathrm{C}: \pm 0.15 \% \mathrm{FS} \pm 1$ unit
- At $300^{\circ} \mathrm{C}$ maximum of PR40-20 thermocouple: $\pm 2.5 \%$ FS ± 1 unit At $300^{\circ} \mathrm{C}$ to $800^{\circ} \mathrm{C}: \pm 1.5 \% \mathrm{FS} \pm 1$ unit At $800^{\circ} \mathrm{C}$ to $1900^{\circ} \mathrm{C}: \pm 0.5 \% \mathrm{FS} \pm 1$ unit
- Golden iron chromel thermocouple: $\pm 1.5 \% \mathrm{~K} \pm 1$ unit
- 2-digit range past decimal point by RTD input: $\pm 0.15 \%$ FS ± 1 unit
- At 0 mV to 10 mV range: $\pm 0.15 \% \mathrm{FS} \pm 1$ unit
- At $-100^{\circ} \mathrm{C}$ maximum of DIN U thermocouple: $\pm 2^{\circ} \mathrm{C} \pm 1$ unit At $-100^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}: \pm 1^{\circ} \mathrm{C} \pm 1$ unit
- At $-100^{\circ} \mathrm{C}$ maximum of DIN L thermocouple: $\pm 1.5^{\circ} \mathrm{C} \pm 1$ unit
- The unit of code Z06 is Kelvin (K).
- The lower limit readout of code B 18 is $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$.
- The lower limit readout (${ }^{\circ} \mathrm{C}$) of codes K44, K46, T44, Z08, and Z07 is $-199.9^{\circ} \mathrm{C}$.
- The lower limit readout (${ }^{\circ} \mathrm{C}$) of codes F50, F46, P50, and P46 is $-199.9^{\circ} \mathrm{C}$.
- The upper limit readout (${ }^{\circ} \mathrm{C}$) of codes F01 and P01 is $99.99{ }^{\circ} \mathrm{C}$.
- The PV lower limit alarm does not occur with code F50.
- The number of digits past the decimal point for dc current and dc voltage is programmable within the range 0 to 3 .
- The readout accuracy of M01 is $\pm 0.15 \% \mathrm{FS} \pm 1$ unit

Dimensions

Panel Cutout

Wiring

Standard terminal | Power |
| :---: |
| supply |
| 90 to 264 V |

- Add-on terminal

Model Selection Guide

Refer to Model Selection Guide 57-77-16-15.

Instructions

- Select the desired Key Number. The arrow to the right marks the selection available.
- Make one selection each from Table I thru VI, using the column below proper arrow.
- A dot (9 denotes unrestricted availability. A letter denotes restricted availability.

KEY NUMBER

Description	Selection	Availability
1 Channel Digital Controller/Programmer	P 301	\downarrow
2 Channel Digital Controller/Programmer	P 302	

TABLE I

Outputs	Channel 1 Relay (5 Amp) Position Proportional Current (4-20mA) Relay/Relay (Heat/Cool) Current/Current (Heat/Cool)	Channel 2 (P302 Only) Current Current Current Current Current	$\begin{aligned} & 0 \mathrm{D} \\ & 2 \mathrm{G} \\ & 5 \mathrm{G} \\ & 3 \mathrm{D} \\ & 5 \mathrm{~K} \end{aligned}$	$\stackrel{-}{\bullet}$	\bullet
TABLE II					
Inputs	One Input Channel Two Input Channels Temperature/Relative Humid		$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	\bullet	\bullet

TABLE III

Power	Universal Power - 90 to 264 VAC, $50 / 60 \mathrm{~Hz}$	ES	\bullet	\bullet

TABLE IV

Option 1	None	00	\bullet	\bullet
	1 Auxiliary Output	01	\bullet	a
	2 Auxiliary Outputs	02	a	
TABLE V				
Option 2	4 Digital Inputs + 3 Events - (Standard features)	0	\bullet	\bullet
	12 Digital Inputs + 3 Events + 5 Time Events	1	\bullet	\bullet
TABLE VI				
None		00	\bullet	\bullet

RESTRICTIONS/NOTES

Restriction Letter	Not Available With		Available Only With	
	Table	Selection	Table	Selection
a	I	2G, 3D, 5K	I	OD, 5G

Warranty/Remedy

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship. Contact your local sales office for warranty information. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace without charge those items it finds defective. The foregoing is Buyer's sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use.
While we provide application assistance personally, through our literature and the Honeywell web site, it is up to the customer to determine the suitability of the product in the application.

For more information, contact Honeywell sales at 1-800-343-0228.

Sensing and Control

Honeywell
11 West Spring Street
Freeport, IL 61032

